
Ranger User Guide -- Optimization Section

1 of 3

Ranger User Guide 

Optimization Section

General Optimization Outline

The most practical approach to enhance the performance of applications is to use use advanced compiler options, employ

high performance libraries for common mathematical algorithms and scientific methods, and tune the code to take advantage

of the architecture. Compiler options and libraries can provide a large benefit for a minimal amount of work. Always profile

the entire application to ensure that the optimization efforts are focused on areas with the greatest return on the optimization

efforts. 

"Hot spots" and performance bottlenecks can be discovered with basic profiling tools like prof and gprof. It is important to 

watch the relative changes in performance among the routines when experimenting with compiler options. Sometimes it

might be advantageous to break out routines and compile them separately with different options that have been used for the

rest of the package. Also, review routines for "hand-coded" math algorithms that can be replaced by standard (optimized)

library routines. You should also be familiar with general code tuning methods and restructure statements and code blocks so

that the compiler can take advantage of the microarchitecture. 

Code should: 

be clear and comprehensible

provide flexible compiler support

should be portable

It is important to avoid too many architecture-specific and compiler-specific code constructs. Use language features and

restructure code so that the compiler can discover how to optimize code for the architecture. That is, expose optimization

when possible for the compiler, but don't rewrite the code specifically for the architecture.

Some best practices are: 

Avoid excessive program modularization (i.e. too many functions/subroutines)

write routines that can be inlined

use macros and parameters whenever possible

Minimize the use of pointers

Avoid casts or type conversions, implicit or explicit

Avoid branches, function calls, and I/O inside loops

structure loops to eliminate conditionals

move loops around subroutine into the subroutine

Compiler Options

Compiler options must be used to achieve optimal performance of any application. Generally, the highest impact can be

achieved by selecting an appropriate optimization level, by targeting the architecture of the computer (CPU, cache, memory

system), and by allowing for interprocedural analysis (inlining, etc.). There is no set of options that gives the highest speed-up

for all applications and consequently different combinations have to be explored.

PGI compiler : 

 

-O[n] Optimization level, n=0, 1, 2 or 3 

-tp barcelona-64 Targeting the architecture 

-Mipa[=option] Interprocedural analysis, option=fast,inline



Ranger User Guide -- Optimization Section

2 of 3

Intel compiler : 

 

-O[n] Optimization level, n=0, 1, 2 or 3 

-x[p] Targeting the architecture, p=W or O 

-ip, -ipo Interprocedural analysis 

See the Development section for the use of these options.

Performance Libraries

TACC provides several ISP (Independent Software Providers) and HPC vendor math libraries that can be used in many

applications. These libraries provide highly optimized math packages and functions for the Ranger system.

The ACML library (AMD Core Math Library) contains many common math functions and routines (linear algebra,

transformations, transcendental, sorting, etc.) specifically optimized for the AMD Barcelona processor. The ACML library

also supports multi-processor (threading) FFT and BLAS routines. The Intel MKL (Math Kernel Library) has a similar set of

math packages. Also, the GotoBLAS libraries contain the fastest set of BLAS routine for this machine.

The default compiler representation for Ranger consists of 32-bit ints, and 64-bit longs and pointers. Likewise for Fortran,

integers are 32-bit, and the pointers are 64-bit. This is called the LP64 mode (Long and Pointers are 64-bit, ints and integers 

are 32-bit). Libraries with 64-bit integers are often suffixed with an IPL64. 

ACML and MKL libraries 

The "AMD Core Math Library" and "Math Kernel Library" consists of functions with Fortran, C, and C++ interfaces for 

the following computational areas: 

 

BLAS (vector-vector, matrix-vector, matrix-matrix operations) and extended BLAS for sparse computations

LAPACK for linear algebraic equation solvers and eigensystem analysis

Fast Fourier Transforms 

Transcendental Functions

 

Note, Intel provides performance libraries for most of the common math functions and routines (linear algebra,

transformations, transcendental, sorting, etc.) for their em64t and Core-2 systems. These routines also work well on the AMD

Opteron microarchitecture. In addition, MKL also offers a set of functions collectively known as VML -- the "Vector Math 

Library". VML is a set of vectorized transcendental functions which offer both high performance and excellent accuracy

compared to the libm, for vectors longer than a few elements.

GotoBLAS library 

The "GotoBLAS Library" (pronounced "goat-toe") contains highly optimized BLAS routines for the Barcelona

microarchitecture. The library has been compiled for use with the PGI and Intel Fortran compilers on Ranger. The Goto

BLAS routines are also supported on other architectures, and the source code is available free for academic use (download).

We recommend the GotoBLAS libraries for performing the following linear algebra operations and solving matrix equations:

BLAS (vector-vector, matrix-vector, matrix-matrix operations) 

LAPACK for linear algebraic equation solvers and eigensystem analysis

Code Tuning

Additional performance can be obtained with these techniques : 

Memory Subsystem Tuning : Optimize access to the memory by minimizing the stride length and/or employ cache



Ranger User Guide -- Optimization Section

3 of 3

blocking techniques.

Floating-Point Tuning : Unroll inner loops to hide FP latencies, and avoid costly operations like divisions and

exponentiations. 

I/O Tuning : Use direct-access binary files to improve the I/O performance.

These techniques are explained in further detail, with examples in the Memory Subsystem Tuning guide 

(http://www.tacc.utexas.edu/~jwozniak/ranger/user_guide/tuningmethods.php)


